

Elektronik/Mikroprozessoren

Labor für Elektronik, FK 03MB

Transistor als Verstärker in Emitterschaltung

Ein Wechselspannungsverstärker für größere Leistungen soll dimensioniert werden. Die Eingangs-Wechselspannung wird mit einem Kondensator ausreichender Größe eingekoppelt. Die Ausgangswechselspannung wird über einen Kondensator mit vernachlässigaber kleinem Wechselstromwiderstand an den Lastwiderstand (Lautsprecher) mit $R_{\rm L}=4.7\Omega$ geschaltet.

Die Betriebsspannung beträgt $U_B=14V$. Der Transistor verträgt eine Verlustleistung von $P_{V\,max}=20W$. Weitere Daten sind den Diagrammen ab Seite 3 zu entnehmen.

1. Gesamtschaltbild

Zeichnen Sie das gesamte Schaltbild der Verstärkerstufe in Emitterschaltung. Der Arbeitspunkt soll mit einem Spannungsteiler eingestellt werden. Bezeichnen Sie die Widerstände mit R_C , R_1 und R_2 .

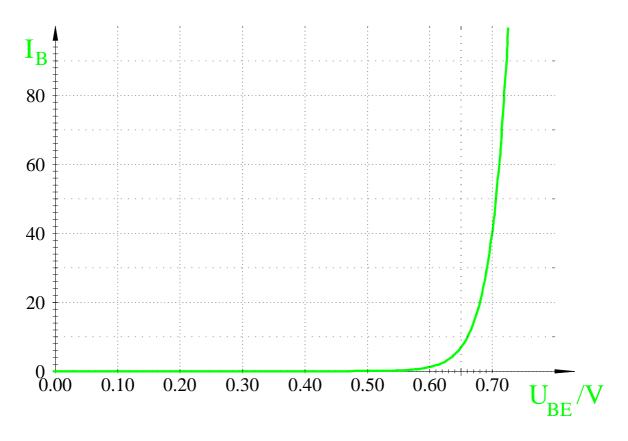
2 Einstellung des Gleichstromverhaltens

- 2.1 Der Kollektorwiderstand beträgt $R_C = 3.5\Omega$. Stellen Sie die Gleichung der Arbeitsgeraden auf und tragen Sie diese in das Diagramm ein.
- Zeichnen Sie die Kurve konstanter Verlustleistung $P_{V_{max}} = 20W$ in das Ausgangskennlinien feld ein. Gibt es einen Arbeitspunkt, an dem der Transistor seine maximal zulässige Verlustleistung $P_{V_{max}}$ überschreiten würde?
- Wählen Sie einen geeigneten Arbeitspunkt, an dem der Verstärker für Wechselspannung mit möglichst großer Amplitude verzerrungsfrei ansteuerbar ist und tragen Sie diesen Punkt in das Diagramm ein. Wie groß sind I_{CAP} und $U_{CE_{AP}}$?
- 2.4 Welchen Arbeitspunkt muß man bei der Basis-Emitterdiode einstellen, um den gewählten Arbeitspunkt im Ausgangskreis zu erhalten? Tragen Sie diesen Arbeitspunkt in das Diagramm ein.
- 2.4.1 Geben Sie die Werte von $I_{B_{AB}}$ und $U_{BE_{AP}}$ an.
- 2.4.2 Tragen Sie die Tangente im Arbeitpunkt ein.
- 2.4.2.1 Ermitteln Sie graphisch aus dem Diagramm die Schleusenspannung U_{BE_0} und den differentiellen Basis-Emiterwiderstand r_{BE} im Arbeitspunkt.
- 2.4.2.2 Ermitteln Sie r_{BE} auch rechnerisch mit Hilfe des Basisstroms $I_{B_{AB}}$ und vergleichen Sie mit dem graphisch ermittelten Wert.
- 2.4.2.3 Zeichnen Sie das Ersatzschaltbild der Basis-Emitterdiode und tragen Sie Bauelementewerte ein.
- 2.5 Wie groß ist die (statische) Stromverstärkung $B = \frac{I_C}{I_B}\Big|_{\Delta P}$ im Arbeitspunkt?
- 2.6 Dimensionieren Sie den Spannungsteiler zur Einstellung des Arbeitspunktes. Der Teilerstrom soll $10 \cdot I_{B_{AP}}$ betragen•

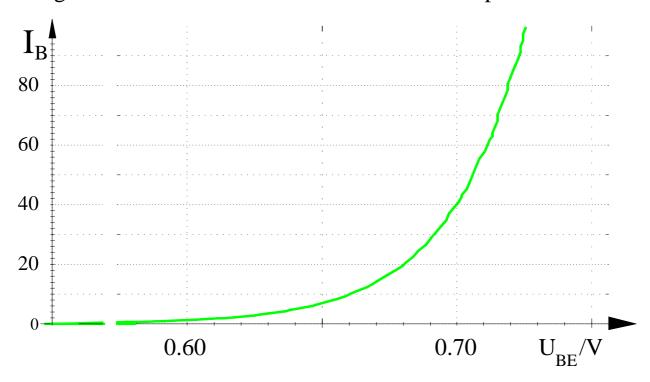
Elektronik/Mikroprozessoren

Labor für Elektronik, FK 03MB

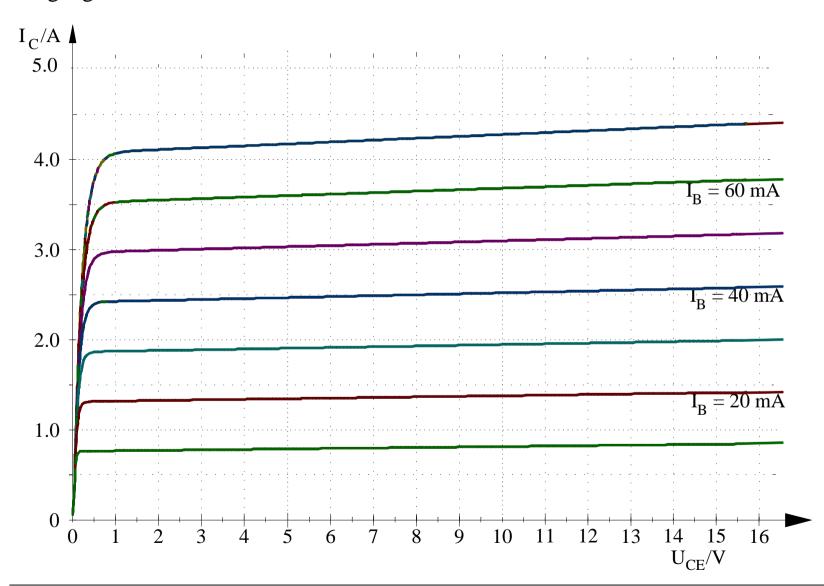
3 Wechselspannungsverhalten ohne Lastwiderstand und Eingangsbeschaltung


- 3.1 Ermitteln Sie die dynamische Stromverstärkung $\beta = \frac{\Delta I_C}{\Delta I_B}\Big|_{AP}$ im Arbeitspunkt.
- 3.2 Ermitteln Sie die Steilheit S = $\frac{\Delta I_C}{\Delta U_{BE}}\Big|_{AP}$ im Arbeitspunkt.
- 3.3 Wie groß ist die Wechselspannungsverstärkung $v = \frac{\Delta U_{CE}}{\Delta U_{BE}} = \frac{-\Delta I_{C} \cdot R_{C}}{\Delta U_{BE}}$ im Arbeitspunkt, wenn nur der Kollektorwiderstand R_{C} und NICHT zusätzlich noch der Lastwiderstand R_{L} (z.B. ein Lautsprecher) angeschlossen ist?
- Zeichnen Sie das Wechselspannungs-Ersatzschaltbild des Eingangskreises (Berücksichtigung der Teilerwiderstände R_1 und R_2 sowie des differentiellen Eingangswiderstands r_{BE} der Basis-Emitter-Diode) und berechnen Sie den Wechselspannungs-Eingangswiderstand r_{E} der Verstärkerschaltung.

4 Beschaltung des Eingangs- und des Ausgangskreises


- 4.1 In den Eingangskreis des Verstärkers mit dem oben berechneten Eingangswiderstand r_E speist eine Wechselspannungsquelle ein, die einen Innewiderstand von $R_i = 1.0\Omega$ aufweist. Bei Leerlauf beträgt die Amplitude der Wechselspannung $\hat{u} = 40 \text{mV}$.
- 4.1.1 Diese Wechselspannungsquelle wird über einen Kondensator, der für Wechselspannung näherungsweise einen Kurzschluß darstellt, an die Eingangsklemme des Verstärkers geschaltet. Ergänzen Sie das Schaltbild in 1. und das Wechselsspannungs-Ersatzschaltbild in 3.4.
- 4.1.2 Wie groß ist die an der Eingangsklemme des Verstärkers liegende Scheitelspannung $\hat{u}_E = \Delta u_{BE}$?
- 4.2. An den Ausgang wird nun über den Kondensator, der für Wechselstrom näherungswiese als Kurzschluß betrachtet werden kann, ein Lautsprecher geschaltet, dargestellt durch einen ohmschen Widerstand mit $R = 4.7 \Omega$.
- 4.2.1 Ergänzen Sie das Gesamtschaltbild in 1.
- 4.2.2 Zeichnen Sie das Wechselspannungs-Ersatzschaltbild des Ausgangskreises. Wie groß ist nun der für Wechselstrom wirksame gesamte Kollektorwiderstand $R_{C_{\sim}}$?
- 4.2.3 Zeichnen Sie die Wechselstromarbeitsgerade in das Ausgangskennlinienld ein.
- 4.2.4 Wie ändert sich die Wechselspannungsverstärkung gegenüber 3.3?
- 4.2.5 Wie groß ist die Amplitude der verstärkten Wechselspannung am Lastwiderstand R_L?

Kennlinie der Basis-Emitter-Diode



Vergrößerter Ausschnitt in der Nähe des Arbeitspunktes

Ausgangskennlinienfeld

